无尽资源采集

MSU contributes to multi-institutional bovine viral transmission study

MSU contributes to multi-institutional bovine viral transmission study

Contact: Meg Henderson

beef cows
Beef cows at MSU's MAFES Brown Loam Branch Experiment Station.聽(Photo by David Ammon)

STARKVILLE, Miss.鈥擲cientists from institutions in the U.S. and the U.K.鈥攊ncluding 无尽资源采集 State鈥攁re collaborating to better understand how livestock management practices may contribute to transmission of bovine coronavirus after social reorganization or 鈥渃ommingling.鈥

The U.S. Department of Agriculture鈥檚 National Institute of Food and Agriculture funded a University of Minnesota-led $3.5 million study to answer questions such as why some animals become infected, and others do not, when they are commingled.

Federico Hoffmann and Florencia Meyer, associate professors in MSU鈥檚 Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology in the College of Agriculture and Life Sciences, and Amelia Woolums, professor in the Department of Pathobiology and Population Medicine in the College of Veterinary Medicine, make up the MSU team, which also has worked on previous projects.

Portrait of Federico Hoffman
Federico Hoffmann
Portrait of Florencia Meyer
Florencia Meyer
Portrait of Amellia Woolums
Amelia Woolums

鈥淲e know that disease outbreaks occur in commingling situations鈥攆or instance, when a dairy calf is taken from the mother and moved into a group setting or a group of beef calves is taken from the pasture and placed on a truck,鈥 said Woolums. 鈥淲hat we don鈥檛 know is whether the stress on the animal鈥攚hich creates excess inflammation in the body鈥攐r the mixing of microbes or other factors are the main reason for these outbreaks.鈥

The MSU scientists are charged with analyzing samples gathered from animals infected with the bovine coronavirus at commingling events staged at Texas A&M University鈥檚 Veterinary Education, Research and Outreach station near Amarillo.

The MSU team has hired a graduate student to work on different aspects of the project, from viral quantitation to immunological assessment and genome sequence analysis. Meyer鈥檚 lab group will identify and quantitate the virus; Hoffmann鈥檚 group will sequence the virus strains and analyze the relationships between the different strains; and Woolums鈥 group will investigate the inflammatory responses in the animals. Noelle Noyes, who leads the study, will explore the role of the microbiome鈥攖he bacteria present in the respiratory system of the infected calves.

The University of Liverpool team will conduct similar studies in the U.K. as their U.S. counterparts. Because farms in the U.K. are greater in number and smaller in population than in the U.S., the dynamics of commingling events and virus transmission may differ from their American counterparts.

鈥淥n our end of the study, we鈥檙e testing calves from only one farm, but the U.K. part of the study will commingle calves from different farms, which adds complexity to the study,鈥 said Woolums. 鈥淲e might see different strains of virus coming from different farms, and if that is the case, we want to study the effects of bringing those different strains together.鈥

At the end of the three-year study, the collaborative group hopes to produce predictive models that explain how the various factors influence disease transmission.

鈥淎fter we have analyzed the results, Dr. Noyes will create predictive models of transmission,鈥 said Meyer. 鈥淭hose models will inform the development of improved management practices that more closely address the transmission dynamics of this virus.鈥

鈥淲e鈥檙e very excited about this project because it offers the opportunity to make connections between how viruses are spread and the ways animals are raised,鈥 added Hoffmann. 鈥淚t has interesting potential for the field of epidemiology.鈥

无尽资源采集 is taking care of what matters. Learn more at聽.